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Abstract

Strains in rocks can be observed but ancient stresses can only be inferred. We should re-examine the potential of strain
geometry as the key to understanding and interpreting common shear structures ranging from faults to plastic shear zones. The

concept of failure along zero extension directions can be applied to natural structures in rocks and is predicated on strain
compatibility between di�erently strained volumes. Zero extension directions are considered for two strain con®gurations, plane
strain (k � 1) and uniaxial shortening (k � 0). The crucial di�erence between shear fractures, or faults, and plastic yield zones is

that the former are preceded by dilatation while the latter are isovolumetric. Volume changes during deformation a�ect the
orientations of zero extension directions and hence of the resulting structures. With isovolumetric strain, yield occurs on planes
at 458 to the principal shortening direction in plane strain and at 54.78 to this axis in uniaxial shortening. Uniaxial shortening
experiments on rock samples allow estimation of the relative volumetric strains when yield zones initiate. When this volumetric

strain is used to estimate the orientation of shear fractures in plane strain, ca 708 dips are predicted for normal faults at high
crustal levels, decreasing downwards to 458. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Because we deal with relatively large, and therefore
observable, strains, geologists generally have a much
better understanding and appreciation of strains and
displacements than we have of stresses and forces,
which in any case can only be speculative for ancient
events. Vindication of this cultural predisposition is
provided by Burland (1965), (quoted in Roscoe, 1970),
who pointed out that while ``stress is a philosophical
conceptÐdeformation is a physical reality''. Engineers
often express problems in terms of stress partly
because most engineering materials undergo very little
strain before disruptive failure and partly because
stresses and forces acting on engineered systems can be
either calculated or measured, albeit indirectly. But en-
gineering practice provides no basis for geologists
either to view stress as a `cause' of deformation
(Edelman, 1989) or for a conjectural stress con®gur-
ation to be the structural geologist's apotheosis.

In spite of geologists' familiarity with strain, their

analyses of faulting and of fault systems are very often

expressed in terms of stress even though macroscopi-

cally ductile shear zones, which form a continuum

with faults, are invariably described in terms of strain.

This di�erence in approach determines not only how

things are described but, more fundamentally, what

questions are asked. The questions asked about faults

have traditionally concerned their orientations relative

to principal stress axes, with responses invoking

Mohr±Coulomb or similar failure criteria based on

consideration of stress. The questions asked about

shear zones have concerned geometry, strain and dis-

placement. While no single approach is likely to be the

one true path to enlightenment, a uni®ed model for

the various types of geological shear structures would

be helpful. This article attempts to introduce a very

preliminary version of a uni®ed strain model for geo-

logical heterogeneous yield structures, and is limited to

consideration of simple shear structures although the

method is also applicable to pure shear structures, e.g.

boudins. The immediate question addressed concerns

the orientations of simple shear structures, but if the

approach is valid it also has potential for development
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of a model in which yield structures are treated as
minimum energy responses to a bulk deformation. The
concepts used are well established in those disparate
parts of the spectrum of engineering concerned with
the properties and behaviours of materials varying
from polymers, soils and metals to granular aggre-
gates, and the literature on these topics is drawn on
freely. As be®ts a uni®ed approach, the terms failure
and yield are treated as synonyms. `Plastic' is used in
its general sense of deformation by intracrystalline or
di�usive ¯ow (Rutter, 1986), encompassing the mech-
anisms associated with `macroscopically ductile' shear
zones.

My interest in the topic arose from ®eld work on
conjugate sets of syn-kinematic ma®c dyke swarms
and on related strike-slip shear zones (Watterson,
1978). For both, conjugate angles containing the short-
ening direction are >908, giving rise to the obvious
questionÐwhy obtuse angles?

2. Constant volume strain

2.1. Orientations of shear zones and faults

A critical di�erence between plastic shear zones on
the one hand and `brittle' faults on the other, is that
the conjugate angle containing the principal shortening
axis of the bulk strain is r908 in the case of shear
zones and is <908 for faults (Ramsay and Huber,
1987, p. 612), typically 40±608 for normal faults
(Anderson, 1951). Another crucial di�erence between
plastic yield and brittle failure in rocks is that the for-
mer is generally, although not necessarily, a constant
volume process whereas the latter is always associated
with a dilatation, or positive volume strain (Rutter,
1986). This di�erence suggests that the controls on
orientations of plastic shear zones might be more
simply de®ned than those of faults, which represent a
non-isovolumetric variation of the less complex isovo-
lumetric case. Following this line of argument we ®rst
examine the controls on orientations of plastic shear
zones. It is argued that localised shear failure takes
place parallel to zero extension directions in the
matrix. Discussion is limited to the two bulk strain, or
loading, con®gurations represented by plane strain and
by uniaxial shortening, with discussion of the isovolu-
metric case followed by that of the non-isovolumetric
case.

2.2. Plastic shear zones

The simplest case to consider is that of localised
simple shear zones accommodating a bulk pure shear
plane strain, with no volume strain. The bulk defor-
mation is assumed to be accommodated exclusively on

numerous shear structures each of which is small rela-
tive to the strained volume, so neither the boundaries
nor the shape of the volume play a signi®cant role in
determining either the locations, orientations or geo-
metries of the localised strains. The bulk strain is the
sum of the high local strains, shear zones, and the
lower matrix strains. A major attraction of the simple
shear model for rock deformation on both small
(Ramsay and Graham, 1970) and large scales (Escher
et al., 1975) is that a high strain shear zone remains
compatible with its matrix without a discontinuity
developing between the two. This compatibility exists
because a shear zone boundary is parallel to the plane
of shear, within which every direction is a line of no
®nite longitudinal strain, and is also a line of no in®ni-
tesimal longitudinal strain. Ideally, therefore, there is
no `mis®t', or strain incompatibility, between either (i)
the deformed shear zone and its, supposedly
unstrained, matrix, or (ii) regions of di�erent shear
strain magnitudes within the shear zone, so long as the
shear strain contours are parallel to the shear zone
boundary, or shear plane. Any strain gradient within a
shear zone can be accommodated compatibly so long
as the gradient is normal to the shear plane. Strictly
speaking, strain compatibility requires only that longi-
tudinal strains on either side of a shear zone boundary
are the same rather than zero but, in practice, non-
zero identical strains would represent a very special
case (Treagus, 1983) not likely to occur with a simple
shear zone. Complications do arise nevertheless,
because strain gradients parallel to the shear plane
must occur in order to accommodate the lateral displa-
cement gradients which are universally present along
both shear zones and faults. These complications are
not considered further as they do not a�ect the con-
clusions. What follows does not con¯ict with the shear
zone model of Ramsay and Graham (1970) but simply
extends it by imposing more restrictive conditions.

The now traditional shear zone model predicts noth-
ing explicitly about the orientation of a geological
shear zone because, as its matrix is considered as
undergoing no strain, all shear zone orientations are
equally compatible with their matrix; although if strain
is accommodated entirely by shear zones their orien-
tations must be such as to accommodate the imposed
bulk strain. The freedom of orientation arises from a
simpli®cation in the model, which is that the matrix is
considered as being unstrained and therefore not con-
tributing to the bulk strain. In practice, there will
always be a penetrative strain of the matrix, either
elastic or both elastic and permanent. As is shown
below, if the local and matrix strains are compatible,
the principal strain axes of the bulk strain will be con-
gruent with those of the matrix strain.

The potential strain incompatibility between a shear
zone and its matrix is, therefore, the key factor deter-
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mining the most likely orientation of a shear zone.
Although strain compatibility is expressed in terms of
geometry, the geometry is an implicit proxy for mini-
mum energy as, in principle, all geometries are poss-
ible. As compatible strains must be maintained
throughout, ideally the problem should be discussed in
terms of instantaneous strain rates, or relative strain
rates, rather than strains. This is because the strains of
concern are those which are taking place at the time
when the location and orientation of a shear zone
becomes established, which is well before yield occurs.
The situation at this instant of time is more precisely
represented by strain rates, or relative strain rates,
than by accumulated strains. For present purposes this
re®nement is not necessary so long as it is remembered
that all strains referred to are small incremental
strains, either elastic or permanent or a combination
of the two, which are described by the incremental, or
in®nitesimal, strain ellipsoid. Only small strains need
be considered when we are concerned primarily with
the initiation stages of geological shear structures
because, for both faults and shear zones, the small in-
itial structures grow into larger displacement structures
because of strain softening mechanisms. Although the
matrix and bulk strains are here taken to be pure
shears, as they are in experimental compression tests,
this is only a convenience and there is no intrinsic
restriction on the matrix and bulk strain con®gur-
ations. For brevity, engineering practice is followed by
referring to lines and planes of no in®nitesimal longi-
tudinal strain as zero extension lines and planes. Local
strains (e ) have lower case subscripts (xryrz) and
the matrix (and bulk) strains have upper case sub-
scripts (XrYrZ). Extensional linear strains are taken
as positive and are expressed as natural strains (e )
where e � ln�1� e�, and e � �l1 ÿ l0�=l0. For small
strains the values of e and e are the same. For an iso-
volumetric strain, ex � ey � ez � 0. Strain ellipsoid sym-
metries are expressed as values of k, where
k � �Z�Xÿ Y ��=�Y�Yÿ Z �� (Flinn, 1962). Note that a
k value is unchanged if there is a component of volu-
metric strain, because volume change is accommodated
by changes in the principal strains which are pro-
portional to the principal strains accommodating the
isovolumetric component of strain.

The conditions to be satis®ed when a localised shear
zone is formed are that (i) the shear zone must remain
coherent with its matrix, and (ii) the local deformation
must have its principal strain components in the same
ratio to each other as those of the matrix and bulk de-
formations (Bowden and Jukes, 1972). The require-
ment for congruent principal strains is self evident
when the bulk strain is accommodated only by local
strains or only by matrix strains; it is also a require-
ment when the bulk strain is accommodated by both
local and matrix strains, if the matrix and local strains

are not partly to neutralise one other. If both the con-
ditions are to be satis®ed then the local deformation
can only occur within planar zones which are parallel
to planes of zero strain, or zero extension, in both the
shear zone and the matrix. In the shear zone the zero
extension plane coincides with the shear plane, which
therefore should coincide with the zero extension plane

Fig. 1. (a) Schematic representation of simple shear band (stippled)

in a volume subjected to plane strain constant volume deformation.

Inset cube shows principal axes of matrix and bulk strains. aZ is the

angle between the shear band and the Z axis of the bulk strain (after

Bowden and Jukes, 1972, ®g. 6a). (b) Mohr representation of the

matrix and bulk plane strain deformations in (a) showing the locus

of the zero extension directions (OB) at 458 to the Z and X axes in

the XZ principal plane and parallel to Y in both the XY and YZ

principal planes. (c) Section parallel to the XZ principal plane in (a)

showing that, as the x axis of the local incremental plane strain ellip-

soid lies at 458 to the local shear plane, the local incremental princi-

pal extension axis (ex) is parallel to the X axis of the bulk and

matrix strains (eX). The ellipticity of the principal section of the

incremental local strain ellipsoid and the amount of shear are exag-

gerated.
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in the matrix, which can be found by using a simple
Mohr construction (Fig. 1a and b). As this zero exten-
sion plane is a zero extension plane in both the matrix
and the shear zone, it is also a zero extension plane of
the bulk deformation. In the case of plane strain
matrix deformation the zero extension plane lies at an
angle of 458 to the maximum (eX) and minimum (eZ)
principal axes of matrix strain (or strain rate), and
contains the intermediate principal axis (eY). Fig. 1(c)
illustrates the coincidence of the principal strain axes
in the local shear zone, in the matrix and in the bulk
volume. Only one of the possible two shear zone orien-
tations is shown in Fig. 1 but the orientation of its
conjugate pair is evident, either from inspection or by
using the complete Mohr circle rather than the abbre-
viated version shown in Fig. 1(a). For small strains it
is evident that the strains in a simple shear zone lying
at 458 to the principal extension axis of the bulk strain
are parallel to, and therefore compatible with, both the
matrix and bulk strains. This conclusion may appear
trivial but it illustrates the basis for consideration of
shear zone orientations for general matrix strains from
k � 0 to k � 1 with either positive or negative volume
strains. For present purposes it is su�cient to consider
only plane strain (k � 1) and uniaxial compression
(k � 0) with, in the ®rst instance, no volume strain.

For a matrix, or bulk, strain where k 6� 1 there is no
orientation of simple shear zone, i.e. a local strain with
eY � 0, which is perfectly compatible with the matrix
even for small strains, but the shear zones which do
form are those with minimum mis®t. As an illustration
I take the case of a k � 0 bulk deformation, corre-
sponding to a truly oblate strain ellipsoid and to a
standard uniaxial compression test. The appropriate
Mohr circle is shown in Fig. 2 from which the locus of
zero extension directions of the bulk strain is every-
where at 54.78 to the Z axis, i.e. the locus of the zero

extension directions is a conical surface (the
`unstretched cone' of Taylor, 1938), rather than a
plane. Clearly, no plane can include more than one
zero extension direction of the bulk and matrix strains
and the shear zones which form are tangential to the
zero extension cone. Any plane tangential to the zero
extension cone is a potential shear plane, i.e. any plane
which lies at 54.78 to the Z axis. All lines within the
shear zone and parallel to the local shear plane are
local zero extension directions but only one of these,
that which is parallel to the local shear direction, is
also parallel to a zero extension direction of the bulk
and matrix strains. Within the local strain region,
strain mis®t between a line parallel to the shear plane
and a line of the same orientation in the matrix
increases with divergence from the shear direction. For
example, in a local shear zone which is normal to the
XZ principal plane (at 35.38 to X and at 54.78 to Z)
the line of greatest mis®t is that parallel to Y (see Fig.
2). The X and Y directions are nominal in so far as all
strains in the XY plane are equal, so Y is simply at
908 to an arbitrarily de®ned X axis in the principal
plane normal to Z. The locus of all directions within
this shear plane is shown by the ®lled circles on the
YZ principal plane in Fig. 2. Representation of the
locus of an arbitrary plane in a Mohr construction is
described by Treagus (1986).

An alternative view (R. Lisle, personal communi-
cation) is that the matrix plane providing least mis®t
with the zero extension plane of the local strain, is the
plane of minimum area change rather than a plane
tangent to the zero extension cone. Although the prac-
tical di�erences are slight, this suggestion o�ers a new
line of enquiry.

Examples of conjugate angles of ca 1108 bisected by

Fig. 2. Mohr circle for isovolumetric k � 0 oblate strain, i.e. eX � eY

� ÿeZ=2. All zero extension directions lie at an angle of 54.78 to the

Z axis and have a conical locus (OB). Filled circles show the locus of

all lines within and parallel to a planar shear band normal to the XZ

principal plane and tangential to the conical locus of the zero exten-

sion directions. Strain units are arbitrary.

Fig. 3. Yield zones (solid lines) with conjugate angles of 1098 and

1108, in sylvinite roof support pillar at depth of ca 1000 m, Boulby

mine, Cleveland, UK. Vertical broken lines represent grooves made

by excavator shovel, which are o�set along yield zones. From sketch

and measurements by Chris Talbot.
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the principal shortening axis in uniaxial shortening are
recorded in the literature on metals (Nadai, 1950),
polymers (Bauwens, 1967) and glass (Hagan, 1980).
Geological examples are relatively common but of lim-
ited value because geological bulk strain, or loading,
con®gurations are usually conjectural, as in the case of
the 1108 conjugate fractures associated with foliation
boudinage (Platt and Vissers, 1980) and the conjugate
angles of 1098 between regional scale shear zones
described by Park (1981). An exceptional case is pro-
vided by a pillar of shaley sylvinite at a depth of ca

1000 m in the Boulby mine, Cleveland, UK in which
the loading can be assumed to be close to a uniaxial
compression. Failure of the pillar is on shear zones
with conjugate angles of 109 and 1108 (Fig. 3).

3. Dilatational strain

3.1. Failure surface orientations

In a material in which failure is associated with
volume strain, dilatation in the case of rocks, the zero
extension directions vary from those in the isovolu-
metric case by an amount determined by the relative
amount and sign of the volumetric strain, but the fail-
ure plane remains parallel to the zero extension direc-
tion. The relationship is well demonstrated in an
elegant experiment (Roscoe, 1970) which merits a
wider geological audience. Unfortunately, as in so
many engineering experiments, the case considered is a
special one related to a particular problem rather than
a general case. In this experiment the problem
addressed was that of failure of a dock retaining wall,
a rather specialised example of plane strain. The novel
feature of the experiment was that the experimental
material, sand, contained a grid of lead shot which
allowed measurement of the pre-failure strains which
were obtained from a series of radiographs at several
stages of deformation.

This experimental design re¯ected Roscoe's convic-
tion that in order to understand failure, it is necessary
®rst to de®ne and understand the precursory strains,
because the location and orientation of a failure sur-
face is de®ned well before failure or, in conventional
terms, well before peak stress. A sand-®lled box of rec-
tangular cross-section was con®ned at one end by a
wall hinged at the lower end, simulating the retaining
wall. The top of the hinged wall was pushed into the
sand until failure occurred (Fig. 4) and radiographs
were obtained at successive increments of rotation
about the hinge. Contours of incremental and cumu-
lative shear strains, shear strain rates and volumetric
strains were produced, together with the trajectories of
the principal axes of ®nite strain, of the zero extension
directions and of the failure surfaces as determined by
dark lines on the radiographs (Fig. 4). The experiment
demonstrated conclusively that the locus of the event-
ual failure surface was determined by the distributions
of precursory shear strains and volumetric strains, the
trajectories of which are parallel to one of the two sets
of zero extension directions. The zero extension direc-
tions are those modi®ed by the dilatation and not
those which would occur in a non-dilatant material.
Most importantly, the experiment shows that the
orientations and locations of major failure surfaces
were ®xed at an early stage of the deformation, when

Fig. 4. (a) and (b) Initial outlines of sandbox (broken lines) with

contours of incremental shear strains (see key) in sand deformed by

rotation, by angle W, of left hand bounding wall of sandbox about

bottom left corner. (a) Shear strain increment for rotation from 2 to

38 and (b) increment for rotation from 4 to 58. (c) Cumulative shear

strains at 58 rotation. (d) Zero extension directions at 58 rotation as

determined from displacements of lead shot. (e) and (f) Contours of

dilatation for the same increments of rotation as in (a) and (b). (g)

Cumulative dilatation at 58 rotation. (h) Failure surfaces identi®ed

from dark lines on radiograph. Note close correspondence, of both

orientations and locations, of incremental and cumulative maximum

shear strains and volumetric strains, zero extension directions and

failure surfaces. (Redrawn from Roscoe (1970), ®gs. 21(a±c), 22(e±g),

24(d) and 23(h).)
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both shear and volumetric strains were quite small,
and well before a yield surface was developed.

Many experiments have shown that `brittle' failure
in rocks is preceded and accompanied by dilatation
(e.g. Sano, 1981), but it is nevertheless di�cult to
quantify the dilatational components of the principal
strains. Firstly, it is not known at what stage preceding
failure the instantaneous dilatation should be
measured. Secondly, although the dilatation is loca-
lised, measured volume changes are those of the whole
test specimen rather of the critical region, a problem
compounded by volumetric strain gradients within the
critical region. The only immediate solution to the pro-
blem appears to be `reverse engineering' of an appro-
priate value for the relative volumetric strain, based on
the observed orientations of failure surfaces in exper-
iments. As the most common experimental con®gur-
ation for rock deformation experiments is uniaxial
shortening (k � 0), a measure of the relative volu-
metric strain can be derived from the observed orien-
tations of failure surfaces in these experiments. This
value can then be applied to predict failure surface
orientations in plane strain, which is assumed to be the
bulk strain most commonly associated with faulting.

3.2. Mohr circles and volume strains

Volumetric strains or, as in this case, relative volu-
metric strains are simply taken account of by using the
Mohr construction. Passchier (1991) provides a proof
that a Mohr circle for two-dimensional isovolumetric
¯ow is centred on the vertical reference axis and that a
Mohr circle centred to the positive side of the reference
axis represents dilatant ¯ow. The same principle is
used by Bowden and Jukes (1972) to represent three-
dimensional strains but their example was restricted to
the case of plane strain (k � 1). The method is here
extended to k � 0 strain and can easily be applied to a
general strain where k has a value other than 0, 1 or
in®nity.

For a volumetric strain (Dv ) eX � eY � eZ � Dv,
where Dv is positive for dilatation, and Dv �
�v1 ÿ v0�=v0 where v0 is the initial volume and v1 the
strained volume. Discussion is limited here to positive
volume strains which are small and which can be
either elastic or permanent or both. Dv is the product
of dilatational extensions along the extended axes (X
and Y for a general oblate strain and X for a plane
strain or general prolate strain). eX, for example, com-
prises a dilatational component and a non-dilatational
component, the proportions of which may vary.
However, for a general oblate strain the dilatational
extensions along the extended axes (X and Y) are in
the same ratio as the non-dilatational components of
strain on those axes, in accord with St Venant's
Principle (Bowden and Jukes, 1972). For example,

with a perfectly oblate strain (k � 0) the dilatational
components of extensions along the X and Y axes are
equal and their product is the volume strain. There is
no dilatational component of extension along the prin-
cipal shortening axis (Z).

For a plane strain, since eY � 0, eZ � Dvÿ eX, or
eX ÿ Dv � eZ, the centre of the Mohr circle is displaced
from the vertical reference axis by Dv/2 (Bowden and
Jukes, 1972) parallel to the strain axis (Fig. 5b). The
displacement is Dv/2 because when the diameter of the
Mohr circle increases by Dv, by increasing the value of
eX with eZ remaining ®xed, its centre is shifted by Dv/
2. Fig. 5 illustrates two cases of plane strain defor-
mation of a cube with sides of length 10 units, one
without volume change (Fig. 5a) and one with an arbi-
trary amount of dilatation (Fig. 5b). In the isovolu-
metric case the dimensions of the principal axes of the
strained cube are X � 10:4, Y � 10 and Z � 9:6, so
eX � 0:04, eY � 0, eZ � ÿ0:04 and eX � eY � eZ � 0 �
Dv (Fig. 5a). With volume strain the dimensions of the
principal axes of the strained cube are X � 10:8

Fig. 5. (a) Mohr representation of constant volume plane strain de-

formation in matrix and bulk volume, for small strains. Locus of

zero extension directions is line OB. (b) Mohr representation of dila-

tational plane strain deformation in matrix and bulk volume, with

centre of the Mohr circle displaced relative to the origin by an

amount Dv/2. The zero extension direction in the XZ plane, point B,

is <458 to Z. OB is the locus of all zero extension lines. é is the

original position of the vertical reference axis. The relative amount

of dilatational strain is given by the ratio Dv=eZ � 1:0.
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(including dilatational extension of 0.4), Y � 10 and
Z � 9:6, so eX � 0:08, eY � 0 and eZ � ÿ0:04 and eX �
eY � eZ � 0:04 � Dv, corresponding to a strained
volume of 1040 units (Fig. 5b). Note that the dilata-
tional component of the extension in X is equal to the
volume strain. For this particular case in which the
dilatational and non-dilatational components of the
extension in X are equal, the zero extension direction
lies at 358 to the Z axis, compared with 458 for isovo-
lumetric plane strain.

Note that as Dv increases as a proportion of eX,
from the 50% in the case illustrated, the centre of the
Mohr circle moves progressively towards Z and the
angle between the zero extension direction and the Z

axis decreases, to the limit where Dv � eX and the zero
extension direction is parallel to the Z axis. This limit-
ing case corresponds to the formation of a tension
crack. An alternative approach (Roscoe, 1970), which
gives the same result, is by reference to the `angle of
dilation', w, where

�_n=v�=_g � ÿ�_eZ � _eX�=�_eZ ÿ _eX� � sin w �1�

and (45ÿ w=2)=the angle between the zero strain rate
direction and the _eZ axis, _g=rate of shear strain and
strains are expressed as strain rates (_e).

However, the `angle of dilation' is simply an ad hoc
engineering parameter comparable with the `angle of
internal friction' in so far as it does not represent an
intrinsic material property.

Constant volume and dilatational uniaxial bulk
strains (k � 0) are illustrated in Fig. 6. Since eX � eY,
2eX � eZ � Dv, or eX ÿ Dv � eZ, and the centre of the
Mohr circle is displaced from the vertical reference
axis by Dv/3 (Fig. 6b). In the isovolumetric case for an
initial cube of side 10 units, the dimensions of the prin-
cipal axes of the strained cube are X � 10:2, Y � 10:2
and Z � 9:6, so eX � 0:02, eY � 0:02, eZ � ÿ0:04 and
eX � eY � eZ � 0 � Dv (Fig. 6a). With volume strain
the dimensions of the principal axes of the strained
cube are X � 10:4 (including dilatational extension of
0.2), Y � 10:4 (including dilatational extension of 0.2)
and Z � 9:6, so eX � 0:04, eY � 0:04 and eZ � ÿ0:04
and eX � eY � eZ � 0:04 � Dv, corresponding to a
strained volume of 1040 units (Fig. 6b). Note that the
product of the dilatational components of the exten-
sions in X and Y is equal to the volume strain and
that the ratios of the dilatational components of exten-
sions in X and Y to their non-dilatational extensional
components are the same. The dilatational components
of extensions in X and Y are an arbitrary 50% of their
total extensions, eX and eY. For this particular case, in
which the dilatational and non-dilatational com-
ponents of the extensions are equal in both X and Y,
the zero extension directions lie at 458 to the Z axis,
compared with 54.78 for the isovolumetric strain. In
this case, as in the plane strain example, Dvÿ eZ � 1:0
and this ratio is a convenient way of expressing the
relative amount of dilatation.

The volumetric strain components of extensions in
X (kr1:0) or X and Y (k<1:0), when expressed as
proportions of the total extensions along these axes,
can vary from 0% (isovolumetric strain) to 100% and
they determine the zero extension direction and failure
surface orientation. Within this range the actual pro-
portion is determined by the material properties and
by the con®ning pressure and must be determined
empirically for each case. For this reason it is necess-
ary to use the orientations of failure surfaces to deter-

Fig. 6. (a) Mohr circles for uniaxial shortening (k � 0) with locus of

zero extension directions (OB). Shear fracture (B) at 308 to the Z

axis in the plane containing Z, is a typical experimental result which

corresponds to a Dv/eZ ratio of 5.0. eXD and eYD are the dilatational

components of eX and eY (eXD � eYD � 0:1). eZ and the non-dila-

tional components of eX and eY are the same as in Fig. 5(b). é is the

position of the vertical reference axis for isovolumetric uniaxial strain

(Fig. 5b). (b) Mohr circles for plane strain (k � 1:0) with the same

Dv/eZ (5.0) as in (a), providing a zero extension direction at 228 to Z

in the XZ plane (eXD � 2:0 and eYD � 0). eZ and the non-dilational

components of eX and eY are the same as in Fig. 5(a) and Dv � 2:0
in both cases. é is the position of the vertical reference axis for iso-

volumetric plane strain (Fig. 5a).
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mine the relative volumetric strains, rather than the
converse.

3.3. Experimental dataÐlow con®ning pressure

Lockner et al. (1992) describe uniaxial shortening
experiments on sandstone cylinders at a low con®ning
pressure of 50 MPa. Acoustic emission monitoring
demonstrated that events, the products of dilatational
cracks, were initially well distributed spatially but
became progressively more spatially restricted to de®ne
the eventual failure surfaces. The failure surfaces are
clearly de®ned long before failure occurs with signi®-
cant acoustic emission at 30±40% peak stress. The
fracture surfaces, the orientations of which were not
restricted by specimen geometry, formed at ca 328 to
Z. Many other uniaxial compression experiments on
rocks at low con®ning pressures, together with the
shear fracture orientations, are reported in the litera-
ture with 308 being a typical value for the angle
between the failure surfaces and the Z axis. Without
volume change we would expect a failure surface at
54.78 to the X axis (Fig. 5b); a failure surface at 308 is
consistent with Dvÿ eZ � 5:0 and shift of the Mohr
circle with respect to the origin by Dv/3, with other
parameters as shown in Fig. 6(a). Applying the same
relative dilatation, i.e. Dvÿ eZ � 5:0, to the plane
strain case (Fig. 6b) shows a zero extension direction
at 228 to the principal shortening axis, consistent with
a normal fault dip of 688. The mean dip of normal
faults in British Coal Measures is reported to be 698
(Walsh and Watterson, 1988). The dependence of fail-
ure directions on bulk strain con®gurations means that
the `angle of internal friction' of a material varies not
only with con®ning pressure but also with the strain
con®guration. It is assumed above that, at the same
con®ning pressure and with the same material, all
strain con®gurations will be characterised by the same
value of relative dilatancy, Dvÿ eZ, but this assump-
tion has not been tested experimentally.

It follows from the above that, for plane strain,
angles bisected by the principal shortening axis (Z)
between conjugate sets of failure surfaces with normal
dip±slip o�set should increase with con®ning pressure,
or depth, from ca 448 (dip 688) at depths of 1±2 km
corresponding to the 50 MPa con®ning pressure of the
experiment, to 908 (dip 458) for plastic yield structures
which are likely to predominate at con®ning pressures
greater than ca 300 MPa (see below). Such changes of
fault dip with depth are consistent with determinations
of fault dips from outcrop and earthquake data, which
were also accounted for in terms of failure along zero
extension directions by Walsh and Watterson (1988)
who also pointed out that normal faults are expected
to become vertical at or near the surface. For the com-
mon experimental con®guration of uniaxial shortening

(k � 0), we should expect an increase in the conjugate
angle containing the Z axis from ca 608 (fault dip 608)
at low con®ning pressure to 1108 (fault dip 358) at
high con®ning pressure. Angles between these limiting
cases will re¯ect the progressive change from maxi-
mum dilatation to isovolumetric failure and the conse-
quent progressive changes in zero extension directions.
The quoted 688 for normal fault dips for plane strain
bulk deformation at low con®ning pressure is purely il-
lustrative because the amount of dilatation is material
dependent. Results reported by Lockner et al. (1992)
indicate that failure in granite is associated with
greater relative dilatation than in sandstone at the
same con®ning pressure, i.e. faults in granite will be
steeper than those in sandstone at the same depth.
Similarly, dips of normal faults will be expected to be
shallower in shales than in sandstones because, for the
same con®ning pressure, dilatational strains will be less
in shale than in sandstone. Refraction of faults across
sandstone±shale boundaries is one manifestation of the
di�erence in dilatancies of these two rock types. The
change from rock deformation with volume strain to
isovolumetric strain with increase in con®ning press-
ure, is illustrated in the two sets of experiments
described below.

3.4. Experimental dataÐhigh con®ning pressure

Loading to failure by axial compression of cylinders
of Coconino sandstone at a range of con®ning press-
ures is described by Friedman and Logan (1973).
Failure was primarily by the formation of cataclastic
LuÈ ders' bands with negligible shear displacement.
LuÈ ders' bands are zones of pure shear deformation
which may form instead of shear zones when the de-
formation bands can extend to the boundaries of the
deformed volume, but they have the same orientations
as simple shear bands. The average conjugate angle
between LuÈ ders' bands increased from 75 to 1108 with
increase in con®ning pressure from 35 to 240 MPa.
Shear fractures, or macroscopic faults, which also
formed in some cases make an angle of 24±358 with
the principal shortening axis. In one case, in which the
conjugate angle of the LuÈ ders' bands was 1108, the
faults are described as conical rather than planar and
thus conform with the conical locus of zero extension
directions. Parallel experiments on limestones at con-
®ning pressures ranging from 0 to 300 MPa provided
LuÈ ders' bands with conjugate angles increasing from
73 to 1038 with increase in con®ning pressure, and
shear fractures with conjugate angles ranging from 37
to 708 although, as the range in a single experiment
can be up to 238, the variation does not correlate with
con®ning pressure.

On the basis of this experimental data fault dips in
sandstones, under plane strain conditions, are expected
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to decrease with increasing depth from ca 70 to 458 as
the dilatation preceding failure decreases to zero.

Particularly revealing are the experiments of
Anderson (1974) who investigated kink-band for-
mation by axial compression of cylindrical specimens
of slate, with the cleavage parallel to the cylinder axis.
Kink-band formation is a typical mode of continuous,
and presumably constant volume, shear failure in
cleaved rocks and minerals and is equivalent to the
formation of plastic yield zones in less anisotropic
rocks and materials. In a series of experiments at con-
®ning pressures from 0 to 700 MPa, both shear frac-
tures and kink-bands formed at all con®ning pressures
but with shear fractures predominant up to 300 MPa
and kink-bands at higher con®ning pressures. The
mean angle between shear fractures and the principal
shortening axis was 30.698 (s.d. 6.98, n � 129) in con-
trast to the mean of 55.48 (s.d. 7.78, n � 457) for kink-
bands. For experiments with >5 shear fractures the
mean angle between fracture and Z axis increased
from 26.18 at 50 MPa (n � 11) to 34.48 (n � 11) at
400 MPa, as expected from the earlier discussion on
variations in proportional dilatation. The dilatations
corresponding to these values, when applied to shear
fracturing in plane strain deformation, predict normal
fault dips of 698 at 50 MPa con®ning pressure decreas-
ing to dips of 608 at a con®ning pressure of 400 MPa.
The mean angle between fractures and the Z axis in
these uniaxial shortening experiments (30.698), equival-
ent to a normal fault dip of 698 in plane strain, com-
pares with the values for sandstones of 308 (Friedman
and Logan, 1973) and 328 (Lockner et al., 1992). The
kink-band conjugate angle of 110.88 is remarkably
close to that of 1108 reported by Friedman and Logan
(1973) for sandstone at their highest con®ning pressure
(240 MPa) and to the theoretical value of 109.88 not-
withstanding the possible anisotropy of extensional
elastic strains induced by the slaty cleavage in
Anderson's experiments. Anderson (1974) also
describes structures, referred to as shear zones, inter-
mediate in both deformation mechanism and orien-
tation between faults and kink-bands. The results of
Anderson's meticulous experiment, perhaps more than
any other data, demonstrate the potential of the zero
extension model for the interpretation and understand-
ing of geological shear structures.

4. Discussion

Those with an interest in the history of structural ge-
ology will recognise some similarity between what is
proposed here and the theory of Becker (1893), who
asserted that shear failure occurred parallel to planes
of no longitudinal strain which were believed to co-
incide with circular sections of the (®nite) strain ellip-

soid. The belief that failure planes coincide with
circular sections of the strain ellipsoid was widely held
and applied during the early part of the 20th Century
and was still being taught when I was a student in the
1950s. Although Becker's views are now regarded as
`discredited', justi®ably so in the case of his misconcep-
tions concerning cleavage, perhaps they deserve more
respect than they currently receive because, since his
time, zero extension directions have been shown exper-
imentally to coincide with failure planes in a variety of
materials. In plane strain the zero extension directions
do coincide with circular sections of the strain ellip-
soid, although they do not do so with other strain con-
®gurations (Treagus, 1986). While the contemporary
evidence was against Becker, in so far as normal faults
usually dip more steeply than the 458 predicted by his
theory, what neither Becker nor his critics took into
account is the e�ect of dilatation on the orientations
of zero extension directions; had volume strains been
taken into account, Becker's theory could have pro-
vided a rationale for the dips of many normal faults.

As the purpose of this short article is to stimulate
structural geologists and others to take a fresh look at
the potential of strain geometry for providing new
insights into heterogeneous yield structures in rocks,
the arguments and evidence presented are possibly
shorter and more selective than would otherwise be
expected. In particular, the congruence between princi-
pal strain components in the local strain region, in the
matrix and in the bulk volume is referred to only
brie¯y. However, if the concept of failure along zero
extension directions is basically sound, as I believe it
to be, it can be extended to encompass general strain
con®gurations and, eventually, a quantitative under-
standing of the energy costs of shear structures of
di�erent type and orientation. It is surely axiomatic
that the structures we observe are those which most
e�ciently accommodate the displacements, or forces,
imposed on volumes of rock. However, the particular
theoretical argument used here for the crucial role of
zero extension directions in shear failure is not the
only one which could be made. Other lines of argu-
ment which might be used include zero extension direc-
tions as velocity characteristics (Bransby and Blair-
Fish, 1975; Jackson et al., 1992), and an argument
based on the accommodation of displacement gradi-
ents along shear structures.

Although future progress in developing a failure cri-
terion based on strain might be made by traditional
observational methods, it is di�cult to see how to
overcome the problem that geological bulk strain, or
loading, con®gurations can only be inferred. The same
problem applies to stress con®gurations. As a dedi-
cated non-experimentalist, I see an important role for
innovative experiments. Roscoe's insistence (Roscoe,
1970) that attention should be paid to the strains and
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structures which precede failure was prescient, so
future progress will perhaps emerge from further devel-
opment of his radiographic technique. Perhaps then we
can look forward to a time when strain geometry and
kinematics are more generally accepted as the standard
tools for interpretation of a variety of geological struc-
tures and the philosophical concept of stress is
reserved for use only on special occasions.

5. Conclusions

(i) Failure and yield surfaces in a wide variety of
materials have been demonstrated experimentally to
form parallel to zero extension directions in a wide
range of materials, including rocks.
(ii) The crucial di�erence between plastic and
`brittle' failure modes is that the former generally is
isovolumetric and the latter is preceded by dilata-
tion.
(iii) Dilatation changes the orientations of zero
extension directions and of the subsequent failure
surfaces.
(iv) The di�erence in conjugate angles between
faults (<908) and plastic shear zones (r908) is a
consequence of the dilatation associated with fault-
ing.
(v) Dips of normal faults are expected to decrease
with depth from ca 708 at depths of 1±2 km to 458
at the base of the seismogenic layer.
(vi) Interpretation of heterogeneous yield structures
in rocks in terms of strain geometry and kinematics
rather than stresses provides an opportunity for
interpreting geological structures in a more uni®ed
way than hitherto.
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